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Abstract 
 
 
The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and 
experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts 
of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as 
well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and 
comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and 
biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from 
newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit 
coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate 
multiple data types and datasets, both experimental and computational, within a single statistical framework accounting for data 
confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of 
specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them. 
 
ESPP2 is part of the Virtual Institute for Microbial Stress and Survival supported by the U. S. Department of Energy, Office of 
Science, Office of Biological and Environmental Research, Genomics Program:GTL through contract DE-AC02-05CH11231 between 
Lawrence Berkeley National Laboratory and the U. S. Department of Energy. 
 
 



Large scale biology: towards 
model cells and organisms

Focused on rapidly inferring as much as possible 
about a cell or organism:

• its physiology, 
• the networks that control its behavior, 
• and how the resultant phenotypes allow them to 

survive in diverse and uncertain environments.
Inference based on collaborative, high throughput 

experiments and comparative analysis.
Yeast community
Environment Stress Pathway Project (ESPP)
Virtual Institute for Microbial Stress and Survival (VIMSS) 
Protein Complex Analysis Project (PCAP) 



Data from large scale biology 
projects

• Gene
– Function
– Cis-regulatory site
– Phenotype/fitness (upon gene knockout)
– Phylogenetic distribution

• Molecular species
– Relative or absolute level

• Transcriptomics
• Proteomics
• Metabolomics

– Interaction with other molecular species
• Protein-protein interactions
• Transcription factor-DNA binding



Bringing it all together physically 
and contextually

• Each individual experiment has merit and 
can be interpreted in isolation.

• However, to achieve the large scale goals 
it is necessary to integrate datasets and 
gain multiple contexts.

www.microbesonline.org
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Gene function inference
In absence of direct experimental data or 
characterized close orthologs ...
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Desulfovibrio vulgaris Hildenborough (+ strand, 3276764..3286764)
COG-DeoR COG-GlpA glpF glpK mdaB COG-NfnB fabG

Desulfovibrio desulfuricans G20 (- strand, 268790..278790)
COG-DeoR COG-GlpA glpF glpK COG3127 COG4181 tesA

Deinococcus geothermalis contig (+ strand, 20114..30114)
COG-BaeS COG-DeoR COG-GlpF COG-GlpK COG-GlpA COG-EutG COG-CaiC

Salinibacter ruber DSM 13855 (- strand, 1829565..1839565)
SRU_1475 fbp COG-GpsA COG-AraC glpK COG-MalK COG-MalK COG-UgpA COG-UgpE

Acidobacteria bacterium Ellin345 (+ strand, 3533064..3543064)
COG-CcmA Acid345_2984 COG-RsbW COG-GlpF COG-GlpK COG-PulG COG-VicK COG-OmpR COG-GlcD

Borrelia burgdorferi B31 (+ strand, 242350..252350)
COG-Lnt BB0238 COG1428 COG-GlpF COG-GlpK COG-GlpA COG1728 COG-CcmABB0246

Symbiobacterium thermophilum IAM 14863 (- strand, 1320973..1330973)
COG3694 COG4587 COG4586 COG-GdhA COG-GlpK STH1194 STH1193 COG212 COG4770

Microscilla marina ATCC 23134 contig (+ strand, 118199..128199)
M23134_08114 COG3173 M23134_08116 COG-GlpK COG-GlpA COG-BioF

Halothermothrix orenii H 168 contig (- strand, 215902..225902)
COG-LeuA COG-LeuB COG-SodC COG2110 COG-GlpK COG579 COG-TrxB COG3862COG-GlpP

Thermoanaerobacter tengcongensis (- strand, 1946982..1956982)
TTE2007 Cda1.3 TTE2005 GlpP GlpF GlpK COG579 HcaD2 AtoC2

Shewanella sp. PV-4 contig (- strand, 13536..23536)
COG-LeuC COG-LeuD COG-FadL ShewDRAFT_0573COG-GlpK COG-Fdx ShewDRAFT_0568 COG2001 COG275

Fusobacterium nucleatum subsp. vincentii ATCC 49256 contig (+ strand, -3881..6118)
COG-GlpK COG-DAK1

Pseudomonas aeruginosa PAO1 (+ strand, 4009444..4019444)
COG384 COG-GlpK COG-EbsC glpF glpK glpR glpD COG-MhpC

Escherichia coli O157:H7 EDL933 (- strand, 4980296..4990296)
menA menG Z5475 Z5474 glpF glpK glpX fpr yiiT yiiR yiiQ

Enterococcus faecalis V583 (- strand, 1866976..1876976)
COG-HcaD EF1931 glpK COG-GlpA glpF COG-XpaCEF1925

Stenotrophomonas maltophilia R551-3 contig (+ strand, 2966..12966)
COG-AceF COG-Mug COG-OmpW COG-GlpA COG-GlpK COG-NlpA COG2378 COG3137 COG-HemC

Staphylococcus saprophyticus (- strand, 1506643..1516643)
COG-MutL COG-GlpP COG-LdcA COG-GlpF COG-GlpK COG-GlpA COG-PldB COG-MiaA

Bacillus clausii KSM-K16 (+ strand, 3506775..3516775)
COG-ACF2 COG-PurR glpF glpK COG-FabG COG2378 COG-SodC folD

Exiguobacterium sibiricum 255-15 contig (- strand, 5176..15176)
COG-PinR COG-LexA COG2389 COG-GlpF COG-GlpK COG-DAK1 COG-DAK1 COG-AzlC

Bacillus halodurans C-125 (+ strand, 1173986..1183986)
BH1089 BH1090 glpP glpF glpK BH1094 glpD BH1096

Exiguobacterium sibiricum 255-15 contig (- strand, 221756..231756)
COG-CcmA ExigDRAFT_1717COG2364 COG-GlpP COG-GlpF COG-GlpK COG-GlpA COG-FrnE COG-LplA

Geobacillus kaustophilus HTA426 (+ strand, 1374806..1384806)
COG3344 GK1358 COG-GlpF COG-GlpK COG2199 COG-GloACOG-PaaI COG-PaaI

Bacillus subtilis subsp. subtilis str. 168 (+ strand, 998422..1008422)
yhcX yhxA glpP glpF glpK glpD yhxB yhcY

Tree and genome browser for
3,699,361 proteins in
457,623 families from
1076 microbal genomes
(includes multiple family assignments)



MicrobesOnline and 
RegTransBase

• RegTransBase provides information on 
microbial transcription factor binding sites and 
sequence motifs based on expert curation and
literature. Articles Curated:  4,445

Experiments: 10,216
Organisms: 180
Genes: 17,346
Sites: 8,833
Regulators: 971
Effectors: 794

• The two databases and websites are interlinked 
with ongoing development efforts for new 
functionalities.



MicrobesOnline data analysis

• Gene-gene and experiment-

experiment correlations *

• Gene expression profile searches
(functional profiling)

• Line and box plots allowing to 

subset on genes and experiments *

www.microbesonline.org

Currently focused on gene expression data but
generalizable to many data types.

*Upcoming release of



Analysis: 
gene-gene expression correlations

Summarizes similarity in gene expression for a set of genes 
across a set of experiments.

Genes flanking an operon provide a context for significance as well
as operon assignments.

Average correlations of randomly sampled genes or permuted
gene expression data for the genes of interest can provide 
statistical significance.

www.microbesonline.org



Gene expression profile searches
Searches rely on the Pearson correlation coefficient as the similarity measure. 
Can identify genes with similar as well as opposite expression patterns.
Computed over many conditions gene co-expression provides expectations
for future experiments and has applications in engineering and design.

+

-
www.microbesonline.org



from a single operon. A biologically motivated cutoff appeared based on a

Identifying candidate genes with 
gene expression profile searches

This example query profile was based on the mean expression of two E. coli genes

group of clearly functionally related genes from the glycerophospholipid
metabolism pathway.

www.microbesonline.org



Analysis of candidates: 
gene-gene expression correlations
Can expand analysis to genome-wide with clustering, but standard
clustering is limited and eventually need more sophisticated and
computationally intensive bicluster search methods. 
For example, need the ability to seed a search with specific
genes and experiments.

www.microbesonline.org



Analysis of candidates: 
line and box plots

Entire compendium pH 2, 5, 7, 8.7

www.microbesonline.org



Analysis of candidates: 
iterative profile searches

Six additional genes (from 3 different operons)
were identified with high expression profile
similarity to the query. A natural cutoff was
provided by the next best weakly
correlated gene. All top hits are members of the
glycerophospholipid metabolism pathway.

www.microbesonline.org



Biological network inference
• Goal is to infer (reverse

engineer) the topology of a 
network (e.g., regulatory, 
signaling), based on direct, 
indirect or combined 
association data.

• Identify data patterns that 
indicate causal influence.

• Networks serve as the 
basis for dynamical 
systems modeling and 
ultimately prediction of 
cellular responses.

Yeast regulatory network from MacIsaac et al. 2006, based on 
computational refinement of chromatin
immunoprecipation on chip (ChIP/chip) TF binding site data.

Nodes = Transcription factors
Edges = regulatory events



Basic biclustering
A bicluster of a data set is a subset of rows that exhibit 

similar patterns across a subset of columns, or vice 
versa. 

A family of data clustering methods which use a 
similarity measure (Euclidean distance, Pearson correlation 
etc.) to compute the input distance matrix for a data 
clustering algorithm (e.g., hierarchical, k-means). The 
result are clusters of genes and experiments with 
similar expression profiles and a 2-D ordering of the 
data induced by the dendrograms.

Disadvantage: uses all 
experiments and all genes
in comparisons and only 1
bicluster per gene/experiment. TIGR Multi-experiment viewer, MeV



The next level: bicluster searching 
and its applications

• Discover (overlapping*) sets of genes and 
experiments exhibiting a (non-binary*) data 
pattern.

• Test stability of gene+experiment, gene, or 
experiment sets with respect to a variety* of 
datasets and statistical criteria.

• Assignment of significance* to patterns in data, 
removal of noise from results and hypothesis.

• High-throughput experimental data analysis and 
troubleshooting.

Family of computationally intensive methods, which search
a data matrix for potentially overlapping biclusters.

* Increased complexity



Coherent bicluster patterns: 
biological mechanism signatures 

Uniform differential expression:
Common regulation in the form of transcriptional activation or repression. 
E.g., genes in an operon, regulon.

Constant Constant

Log ratio

+3-3



Non-constant coherent bicluster 
patterns
  Gradient
Experiments

Gradient
 Genes

   Gradient
Experiments

Gradient
 Genes

or

or

Log ratio

+3-3

Increasing/decreasing
response in time course
or condition gradient.

Potentially co-regulated
transcripts differing in
magnitude of differential
expression.



Common functional genomics 
data types

Gene-by-experiment,
e.g., gene expression Gene-by-gene, e.g.,

protein interaction matrix

Gene- or experiment- by-
features, e.g.:
GO terms
Functional categories
Phylogenetic profiles
Gene, mRNA, and
protein features



Biclustering as statistical data 
organization and integration Full criterion = 

weighted sum of sub-criteria 

Manuscript in preparation

Row Mean Squared Error (MSE), 
other correlation and rank criteria
• Significance score calculated from 

an empirical null distribution created 
from random draws of all allowed 
bicluster sizes.

• Probability that a value as extreme or
more extreme would occur if bicluster
was randomly sampled.

Gene by Experiment

Cross-validated R2

• Calculated using data-adaptive
software with polynomial spline fitting.

• Selects subset of features using 
cross-validation.

Gene/Experiment by Feature

Proportion score

Protein by Protein



Bicluster search trajectory
Random 7x7 
starting block

Current bicluster



Yeast regulon ‘stability’
Results from novel statistical data fusion algorithm:
10 runs each for 80 S. cerevisiae regulons from MacIsaac et al. 2006 
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Comparing features and criteria: 
bicluster membership

Bicluster A and B overlap:

∩ GenesA, GenesB

√GenesA x GenesB

∩ ExperimentsA, ExperimentsB

√ExperimentsA x ExperimentsB

10 final biclusters
Single set of runs
Same starting bicluster
Varying feature set 
Varying criteria



Protein-protein interaction 
profiles for final biclusters



Perspectives
• Next questions

– How do different features and datasets contribute to 
known regulon recovery?

– What are the properties of known regulons?
• Next additions to algorithm

– Methods
• Forward selection
• Post-analysis toolbox

– Datasets
• Sequence motifs
• Pathways and metabolites

• What are the hallmarks of success?
– Evaluate recovery of known regulons in presence of 

noise
– Discovery of novel regulons
– Dynamical modeling based on predicted regulons
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